
APPENDIX
SPARSE: Quadratic Time Simultaneous
Alignment and Folding of RNAs Without
Sequence-Based Heuristics
Sebastian Will, Christina Otto, Milad Miladi,
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1 SUBSEQUENCE SCORE AND PROOF OF
LEMMA 1

For the proof of Lemma 1 (Main Text), we need to define the score
of subsequences.

DEFINITION 1 (Subsequence Score). Given sequencesA andB,
with according functions σ, ΨA and ΨB . The score of a structure
alignment triple (S, T,A) of subsequences A[̂i..ĵ] of A and B[k̂..l̂]
of B is defined analogously to the score of entire sequences (1) as

score[̂i..ĵ k̂..l̂](S, T,A) :=∑
(i,j)∈S

ΨA
i+î−1 j+î−1 +

∑
(k,l)∈T

ΨB
k+k̂−1 l+k̂−1

+
∑

(i,k)∈A

σ(i+ î− 1, k + k̂ − 1) +Nindelγ, (1)

where Nindel is the number of indels in the alignment of the
subsequences.

In the definition, note that since (S, T,A) is a structure alignment
triple, S is a structure ofA[̂i..ĵ], S is a structure ofB[k̂..l̂], andA is
an alignment of the subsequences. Essentially, we map the positions
of the subsequences in intervals [1..(ĵ − î + 1)] and [1..(l̂ − k̂ +
1)] back to the coordinates of the entire sequences when accessing
values of σ, ΨA and ΨB .

PROOF OF LEMMA 1. Mab(i, k) ≥Mab(i∗, k∗)+(i−i∗)γ+
(k−k∗)γ holds, since each optimal sparse structure alignment triple
of the subsequencesA[aL+1 . . . i∗] andB[bL+1 . . . k∗] is a sparse
structure alignment triple of the subsequences A[aL + 1 . . . i] and
B[bL + 1 . . . k] with score Mab(i∗, k∗) + (i− i∗)γ + (k − k∗)γ.

For “≤”, let (S, T,A) be an, in the sparse structure and alignment
space, optimal structure alignment triple of the subsequences
A[aL + 1 . . . i] and B[bL + 1 . . . k]. Then

score[aL + 1..aR − 1 bL + 1..bR − 1](S, T,A) = Mab(i, k).

Let us restrict (S, T,A) to the subsequences A[aL + 1 . . . i∗]
and B[bL + 1 . . . k∗] by removing any base pair (j, j′) ∈ S with
{j, j′} 6⊆ {aL + 1 . . . i∗}, any base pair (l, l′) ∈ T with {l, l′} 6⊆
{bL + 1 . . . k∗}, and any match (j, l) ∈ A with j 6∈ {aL + 1 . . . i∗}
or l 6∈ {bL + 1 . . . k∗}. We call this restriction (Sr, T r,Ar). One
can show that (S, T,A) = (Sr, T r,Ar).

Subproof: Assume that Sr 6= S. Since Sr ⊆ S, there is
a base pair (j, j′) ∈ S \ Sr with i∗ < j′ ≤ i. Since
(S, T,A) is in the sparse space, this implies (j, j′) ∈ P and
Pr

loop
a [(j, j′)|A] ≥ θ3. Consequently, j′ is represented, which

contradicts the maximality of i∗. Analogous arguments show
T r = T and Ar = A.

Finally, (S, T,A) = (Sr, T r,Ar) implies

score[aL + 1..aR − 1 bL + 1..bR − 1](S, T,A) =

score[aL + 1..i∗ bL + 1..j∗](Sr, T r,Ar)

+ (i− i∗)γ + (k − k∗)γ.

In turn, Mab(i, k) ≤Mab(i∗, k∗) + (i− i∗)γ + (k − k∗)γ.

2 FURTHER EVALUATION RESULTS
Figure 1 compares the alignment quality vs. sequence identity
behavior of LocARNA, SPARSE, and RAF for three-way multiple
alignment instances (benchmark set k3 of Bralibase 2.1.)
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Fig. 1. Alignment quality (measured by sum-of-pairs score SPS) at different
sequence identities for three-way alignments (Bralibase 2.1 set k3). The
representation is analogous to Figure 4 (Main Text).

3 EXAMPLE ALIGNMENT SPARSE VS. LOCARNA
We compare the alignment and folding of two RNAs from family
gcvT by LocARNA and SPARSE (Figure 2.) This example
illustrates the benefits of incorporating loop deletions and insertion.
Since LocARNA disallows loop deletions and insertions, it cannot
predict structure in deleted regions; consequently, it predicts large
unstable loops. In contrast, SPARSE supports loop deletions
(represented by ’ ’ in the alignment) and thus predicts a large stem in
sequence A, which is deleted in sequence B. Thereby, the remaining
parts can also form a stable structure with short loop regions.
This behavior is reflected by the MCC prediction quality scores,

1



LocARNA:

A -.......(((.............((.......)).....
A -CAACUCUGGAGAGUGUUUACGAAGGUAAACCACCCACGA
B UCGACCCUCGCGGGAGACAUCGGGAUU----CGAUCCCGA
........(((.............((.----..)).....

.(((....((((...(((...)))...))))..)))....
A AGCAAAUAUUUGUUCUUUUUUGAAGAAUGAAUAUGCAACU
B GGCCGA-AGGCGCAACCGCCCCGGAAACGCUCAGGCAA--
.(((..-.((((...(((...)))...))))..)))..--

......................)))..
A UUCUGGUAUAAGGACAGAGAUUUCUUC
B ---------AAGGACCG----CGCGGG
---------........----.)))..
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SPARSE:

C ----.((-(((((......((((((....-)))))).(((
A ----CAA-CUCUGGAGAGUGUUUACGAAG-GUAAACCACC
B UCGACCCUCGCGGGAGACAUCGGGAUUCGAUCCCGAGGCC
.....((.(((((......((((((.....)))))).(((

...((((...(((((((((((((...))))))))))))).
A CACGAAGCAAAUAUUUGUUCUUUUUUGAAGAAUGAAUAUG
B GAAGGCGCAACCG__________CCC__________CGGA
...((((...(((__________...__________))).

...))))..))).......))))).)).....
A CAACUUUCUGGUAUAAGGACAGAGAUUUCUUC
B -AACGCUCAGGCAAAAGGACCGCGCGGG----
-..))))..))).......))))).)).----
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Fig. 2. Alignment and structure prediction results of LocARNA and SPARSE for two example RNAs of the family gcvT. A and C show the respective
alignments computed by the tools; respective subfigures B and D visualize the simultaneously predicted structures projected on each sequence A and B by
RNAplot (Lorenz et al., 2011). A,B Since LocARNA cannot predict structure in deleted regions, large unpaired regions are predicted in the multiloop, which
destabilize the structures. C,D The more flexible model in SPARSE allows loop deletions and insertions (represented by ’ ’ in the alignment) and thus can
align stems of varying length; in this example, the stems at the bottom. This results in smaller loops and thus more stable structures.

which assess the similarity of the predicted structures to the Rfam-
derived reference structures, ranging from 0 to 1. In this example,
LocARNA achieves a MCC of 0.51, which SPARSE improves to
0.94.

REFERENCES
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